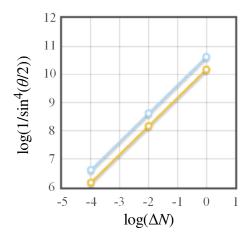


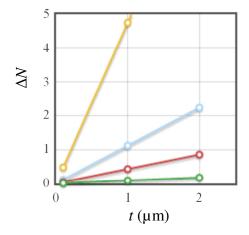
O átomo de Rutherford

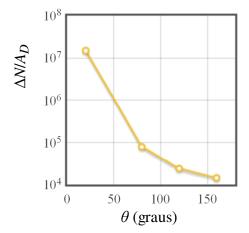
O modelo proposto por Rutherford em 1911 para explicar o espalhamento de partículas alfa por finas folhas metálicas leva a uma expressão que relaciona o número de partículas espalhadas ΔN à intensidade I_0 do feixe incidente, à área A_D do detetor, ao número n de núcleos por unidade de volume, à espessura t da folha, à distância r da folha ao detetor, ao número atômico r dos átomos da folha, à energia cinética r da partícula inicidente e ao seno do ângulo de espalhamento r0 (r1 é a constante da força elétrica e r2 é a carga do elétron):

$$\Delta N = \left(rac{I_0 A_D n t}{r^2}
ight) \left(rac{k Z e^2}{2 E_k}
ight)^2 rac{1}{\sin^4(heta/2)}$$

Esta expressão pôde ser testada de três maneiras com os dados que Geiger e Marsden obtiveram investigando as interdependências entre algumas variáveis experimentais. Nesta atividade, vamos fazer gráficos semelhantes aos realizados por eles com os dados experimentais. Note que ΔN tem as mesmas unidades de I_0 (partículas por unidade de tempo por unidade de área de feixe incidente sobre o alvo).


Considere um feixe de partículas alfa com 6 MeV de energia e intensidade de $I_0 = 1.0 \times 10^{-9}$ partículas/segundo/mm². Considere também um detetor com 5,0 mm² de área, uma distância de 2,0 cm entre o centro espalhador e o detetor e um número $n = 6.0 \times 10^{28}$ átomos/m³ para todos os materiais (o que é aproximadamente razoável), utilize a fórmula para fazer os gráficos ao lado.


No primeiro quadro, faça dois gráficos, um para a prata (Z=47) e um para o ouro (Z=79), utilizando $\Delta N=1$, 0,01 e 0,0001 partículas/s/m² e uma espessura t=1,0 µm para as folhas-alvo. (Os valores de ΔN podem parecer estranhos à primeira vista, mas poderiam ter sido obtidos a partir de um experimento que adquiriu dados por um longo tempo e foram normalizados para 1 segundo).


No segundo quadro, faça quatro gráficos, um para o alumínio (Z=13), um para o cobre (Z=29), um para a prata (Z=47) e um para o ouro (Z=79), utilizando espessuras t=0.5, 1.0 e 3.0 μ m para as folhas-alvo e um ângulo de espalhamento de 45°.

No terceiro caso, faça um gráfico para o ouro (Z = 79), para $\theta = 20, 80, 120$ e 160 graus e espessura t = 1,0 µm para a folha-alvo.

Em todos os casos, considere um tempo de aquisição de 1 segundo. A constante elétrica é $\mathbf{k} = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$ e a carga do elétron é $\mathbf{e} = 1.6 \times 10^{-19} \text{ C}$.

